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From the analysis o f the H RNM R spectra o f  two tricyclic analogues o f  adenosine and guanosi­

ne, 4,5-diamino-9-(/?-D-ribofuranosyl) pyrimido[5,4-f]pyrrolo[2,3-d]pyrimidine (adenosine-ade- 
nosine, AA) and 4,7-diamino-9-(/?-D-ribofuranosyl)pyrimido[5,4-f]pyrrolo-[2,3-d]pyrimidin-5- 
one (adenosine-guanosine, AG ), dissolved in liquid N D 3 the preferred conformations o f the ribose 
moiety are derived in the temperature range between +  40 and -  60 °C. The analysis is based 
on the two state N  <=> S model o f  the furanoside ring proposed by Altona and Sundaralingam. 

► Both compounds show a pronounced stabilization o f the S-conformer o f the sugar ring ([S] ~  0.8). 
The van’t H off enthalpy for the S <=> N equilibrium is -  3 kJ m ol-1. The syn <=> anti equilibrium  
is even at -  60 °C  fast compared to the HRNM R time scale.

Introduction

F rom  the analysis o f  the com m on purine(/?)ribo- 
sides by H R N M R  and N M R  relaxation techniques a 
correlation between the conform ation o f the furano­
side ring and the glycosyl torsion angle could be de­
rived [1, 2]. In the N -form  (C 3 '-endo) o f the ribose 
the glycosyl torsion angle o f the base is found in the 
anti region (180 ° ^  Y ^  260 °), w hile in the S con­
form ation o f the sugar (C 2 '-endo) the base reveals a 
pronounced preference for the syn  range o f the gly­
cosyl torsion angle (0 ^  Y ^  60 °). The com m on pu- 
rine(/?)ribosides, however, only show a slight p refer­
ence for the S-syn conform ation, N -anti is w ith a 
mole fraction around 0.4 alm ost equally  strong pop­
ulated. Subsequent studies on 2'- and 3'-deoxyamino- 
adenosine [3], two com pounds showing a pro­
nounced preference for the S and N  ribose, respec­
tively, confirm ed the correlations derived for the na­
tural purine(/?)ribosides.

Abbreviations: A, adenosine; 8 BrA, 8-bromoadenosine; 
AA, 4,5-diamino-9-(/?-D-ribofuranosyl) pyrimido[5,4-f]pyr- 
rolo[2,3-d]pyrimidine (adenosine-adenosine); G, guanosine;
8 BrG, 8-bromoguanosine; AG , 4,7-diamino-9-(/?-D-ribofu- 
ranosyl) pyrimido [5,4-f] pyrrolo [2,3-d] pyrimidin-5-one.
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The two tricyclic analogues o f  adenosine and gua­
nosine studied here, represent com pounds where 
the base is free to interconvert by ±  180 ° around 
the glycosidic bond w ithout changing the interaction 
with the sugar moiety. The sterical relationships be­
tween sugar and base are at all allowed glycosyl to r­
sion angles equal to the geom etrical dem ands o f the 
syn conform ation in the purine(/?)ribosides.

Experimental

The synthesis o f the tricyclic nucleosides adenosine- 
adenosine and adenosine-guanosine has been p u b ­
lished previously [4]. 5 mg o f each substance were 
dissolved in 0.5 ml liquid trideu teroam m onia. D e­
tails o f the sample preparation have been given else­
where [ 1 , 2 ].

The spectra were ob ta ined  at 100.1 M Hz on a Va- 
rian X L-100-15FT  spectrom eter equipped  w ith a 
16 k 6201-100 com puter and disk accessory. The d ig ­
ital resolution o f the spectra was 0.1 Hz. T em pera­
tures were m easured before and after each experi­
ment with a m iniature therm ocouple. They are accu­
rate to +  0.5 °C. The analysis o f the proton spectra 
o f the ribose m oiety was perform ed by application  
o f the com puter program  LAM E (QC PE no. 111). 
The sim ulations were considered successful, if  the
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deviation between all resolved lines in the experi­
m ental and sim ulated spectra was ^  0.1 Hz.

Chem ical shifts given in Table III are referenced 
to an external standard  o f 1% TM S dissolved in CS2. 
No attem pts to correct for bulk magnetic susceptibil­
ity effects were m ade. The proton longitudinal re­
laxation m easurem ents were perform ed with a 
180°-r-90°-5 • T1 pulse sequence o f the SYM ON 
program  o f the disk accessory. D etails o f the experi-
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mental procedures have been described elsewhere [ 1 , 
2], The tim e dependent am plitudes d id  not show any 
deviations from a single exponential function for 
times 2 T j .

Theoretical Section

The sterical flexibility o f the nucleoside fram e­
work is given by three equ ilib ria  (Fig. 1):

1 .The rotation around the glycosidic bond: the 
syn <=> anti equ ilibrium  o f  the base.

2. The conform ational equ ilib rium  o f the furanoside 
ribose ring: The pseudoro ta tion  o f the ring w ith the 
two states o f m inim um  energy N  and S  [5, 6 ],

3. The rotation o f the exocyclic 5 'C H 2 O D -group 
around C 4'— C 5' described by the three rotam ers 
g +, t, and g~ [7, 8 ],

The equilibria 2. and 3. concern the ribose m oiety 
only and the positions o f these equ ilib ria  can be d e­
rived from an analysis o f  the vicinal proton proton 
coupling constants o f the ribose protons [5 — 8 ].

D etails o f the procedure em ployed for the N D 3 

solutions have been published earlier [9].
For the purine(/?)ribosides the quan tita tive de­

scription o f the syn <=> anti equ ilib rium  could be ob ­
tained from the analysis o f the proton longitudinal 
relaxation rates and the in tra-m olecular N O E  factors 
[10, 1,2]. The com plete longitudinal relaxation rate 
o f a specific proton in a m olecule o f the size o f a 
nucleoside is given by [ 1 0 , 1 1 ]:

R i ^  Qij “I" Qi
j * i

(1)

Fig. 1. Structural formulas and possible internal motions 
of the nucleoside analogs studied: A) chemical structure of  
A, AA, G and AG; B) rotation around the glycosidic bond; 
C) peudorotation o f the ribose ring; D) Newmann projec­
tion along the C 4' — C 5' bond showing the three classical 
rotamers.

with Qn the direct d ipo lar relaxation  rate given by

Qa =  M R2 ''if  • (2 )

yH being the gyrom agnetic ratio  o f the proton, r{j the 
distance between proton i and j  and rc the rotational 
correlation time. The term  q* includes all o ther in ­
tram olecular relaxation paths o f spin i.

However, because o f the r - 6  dependence, relaxa­
tion studies are only applicable, if  at least one proton 
at the base moiety approaches som e o f the ribose 
protons to a distance betw een 0.40 and 0.25 nm. At 
greater distances the badly defined term  becom es 
the dom inating term  in Eqn (1) and one cannot ex­
tract any geom etrical in form ation from  the Ri stu ­
dies.
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Results and Discussion

Relaxation rate studies, position o f  the syn <=> anti 
equilibrium

Table I contains the relaxation rates obtained for 
the single protons o f AA and A G  at — 60 °C  com par­
ed with the previously published data  for A [1], In 
the purine(/?)ribosides the base proton H  8  is ideally 
suited for an analysis o f the syn <=> anti equ ilib rium  
[ 1 0 , 1 , 2 ], while the experim ental relaxation rate o f 
H 2 is alm ost an order o f m agnitude sm aller than the 
rates of the rem aining protons, thus the relaxation o f 
H 2 is dom inated by the term . The sam e holds for 
the corresponding protons (2 and 7) in AA and A G ,

Table I. Longitudinal relaxation rates o f  the single protons 
o f  A, AA, and AG in N D 3 at -  60 °C.

l / 7 \
[sec-1]

A AA AG

h  r 0.26 0.34 0.32
H 2' 0.84 0.80 0.91
H 3' 0.91 0.87 0.71
H 4' 0.63 0.91 1.0
H5'a + b 2.86 3.3 3.3
H 2 0.0059 0.10 0.081
H 8 0.44 - -

the only base protons rem aining in the tricyclic 
analogs. As can be seen from the interproton distances 
given in Fig. 2 these protons can approach only H  2' 
in a very small region o f  the glycosyl torsion angle to 
distances below 0.4 nm and these ranges o f the gly­
cosyl torsion angles are energetically unfavourable 
because o f close contacts between H 2' and N  3, re­
spectively N  1 or N  7 in the tricyclic analogs.

It is thus impossible to derive from the relaxation 
studies the position of the syn <=> anti equilibrium .

The base proton signals in AA and A G  rem ain 
sharp down to the lowest tem perature, and also the 
sugar m oiety reveals, com pared to A sharp  signals 
down to the lowest tem peratures reached. The chem ­
ical shifts (Table III) o f  H  2 (H 7), H 1' and H 2' in 
AA and AG differ at the lowest tem perature by up 
to 0.15 ppm  and one can consequently expect, tha t 
these signals should becom e broadened and finally 
separated, if  the rate o f the syn <=> anti conversion 
becomes comparable to the chemical shift difference. 
This result is in m arked contrast to the behaviour 
o f the pteridinenucleosides [ 1 2 ], in these com pounds 
the sugar signals broaden at tem peratures below
0 °C  and at — 60 °C  two resolved m ultipletts are 
seen for H 1' and H 2', indicating that the syn <=> anti

inversion in these com pounds is slow on the tim e 
scale o f a H R N M R  experim ent. The sharp signals 
found in the tricyclic analogs and especially the fact 
tha t only one signal is found for H 2 and H 7 in AA, 
can thus tentatively be taken as evidence that the ac­
tivation energy for the syn <=> anti inversion for these 
com pounds is considerably lower than the activa­
tion energy o f  ~  40 kJ m ol - 1  found for the furano- 
side pteridinenucleosides [13].

H R N M R  studies, conformation o f  the ribose moiety 

The results o f the analysis o f the proton spectra 
are contained in Tables II and III. In both substances 
J r  2 ' increases and J3' 4> decreases with falling tem per­
ature. The only significant difference between AA 
and A G  is found in J4- 5' a + b  • In A G  these coupling 
constants are significantly sm aller than the corre­
sponding results observed in AA.

Fig. 2. a) Distances between the base proton H 2 and the 
four ribose ring protons H 1' to H 4' as a function o f the 
glycosyl torsion angle Y (%). b) Distances between the ribose 
ring proton H 2' and some base atoms as function o f  the 
glycosyl torsion angle Y ( j )■ The dotted line indicates the 
van-der-Waals’ contact distances o f  N  . . .  H and C . . .  H. 
Both figures show the case o f  the symmetric AA. The data 
are derived from the interatomic distances calculated for 
adenosine. In the tricyclic analogs N  3 o f the purine rings 
corresponds to N 1 and N 8 while C 2 corresponds to C 2 
and C 7.
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From  the coupling constants the populations of 
the different conform ers are derived. These data are 
shown together with previously published results [ 1 , 
9] for A, G, 8  BrA and 8  BrG in Table IV. In both 
AA and A G  the S-conform er is dom inating. It can 
be seen that the two com pounds behave very sim ilar 
to the 8 -brom o substituted purine(/?)nucleosides. 
The position o f the N  <=> S equilibrium  is within the 
accuracy o f the analysis identical in 8  BrA and AA, 
while the stabilization o f the S-ribose is marginally 
m ore pronounced in 8  BrG as com pared to AG. In 
our opinion this la tte r difference is an additional 
hint tha t both conform ers o f A G , with the adenine 
part respectively the guanine in the syn range are pop­
ulated w ith com parable mole fractions.

The g + conform er, with the 5'-hydroxyl group 
above the furanoside ring in greatest proxim ity to 
the base moiety, is under all conditions the dom i­
nant conform er.

C om pared to the purine(/?)ribosides the tricyclic 
com pounds AA and A G  have to be regarded as pure 
syn nucleosides, since in all possible ranges o f the 
glycosyl torsion angle they have one o f the two pyri­
m idine rings above the ribose ring. These com ­
pounds thus confirm  a correlation between the syn 
position o f the base and the S state o f the ribose pre­
viously derived for the purine(/?)ribosides [1 — 3]. 
The sam e correlation appears to hold also for the

Table III. Chemical shifts o f the single protons o f AA, AG , A and G dissolved in N D 3 at + 4 0  °C and -  60 °C.

8 [ppm]

r [ ° c ]

A AA G AG

+  40 - 6 0 +  40 - 6 0 +  40 - 6 0 +  40 - 6 0

H 1' 5.63 5.67 6.143 6.147 5.36 5.44 5.935 6.020
H 2! 4.15 4.14 4.802 4.864 4.08 4.05 4.705 4.803
h  y 3.86 3.87 3.949 3.954 3.78 3.82 3.905 3.945
H 4' 3.67 3.71 3.666 3.774 3.58 3.64 3.638 3.758
H 5' A 3.39 3.40 3.396 3.485 3.31 3.37 3.387 3.490
H 5 'B 3.28 3.29 3.257 3.327 3.20 3.25 3.247 3.346
H 2 7.88 7.84
H 8 8.08 8.27 7.37 7.57

Table IV. Results o f the conformational analysis for the two tricyclic com pounds compared to A, 8 BrA. G and 8 BrG.

r [ ° c ]

A 8 BrA AA G 8 BrG AG

+ 40 - 6 0 +  40 - 6 0 +  40 - 6 0 +  40 - 6 0 +  40 - 6 0 +  40 - 6 0

[N] 0.45 0.43 0.28 0.17 0.27 0.18 0.40 0.37 0.21 0.12 0.25 0.18
[g+] 0.68 0.70 0.45 0.22 0.55 0.62 0.73 0.75 0.70 0.72 0.73 0.71
[t] 0.15 0.20 0.26 0.47 0.16 0.17 0.13 0.14 0.14 0.14 0.08 0.13

8.0 70 6.0 5.0 tö 3.0jpm g
Fig. 3. Experimental proton high resolution spectra o f so­
lutions o f AA and AG in N D 3 at -  60 °C.

Table II. Vicinal proton proton coupling constants o f  the 
ribose protons in Hz o f the two tricyclic compounds dissolv­
ed in N D 3 at +  40 °C and -  60 °C.

j ij [Hz] 

r [°C ]

AA AG

+ 40 - 6 0 +  40 - 6 0

J i'2’ 6.8 7.7 7.1 7.7
J 2! 3' 5.4 5.1 5.4 5.0
J  y  4' 2.9 1.8 2.4 1.7
J  A' 5' A 3.5 3.6 2.8 3.2
J A! 5' B 4.6 3.9 3.7 3.5
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Fig. 4. Temperature dependence o f the m ole fraction in 
the S and N state o f AA and AG , compared to A, 8 BrA, G 
and 8 BrG.

5'-adenosinem onophosphatem onom ethylester, a na­
tural 5 '-purine(/?)nucleotide analogue [14, 15].

It must, however, be stated, tha t this correlation 
was only derived and thoroughly tested for purine(/?)- 
nucleosides and analogues w ith sim ilar geom etrical 
constraints. In these substances a correlation between 
S-syn and N -anti could be derived. It is not to be ex­
pected that these correlations should also hold for 
the pyrimidine(/?)nucleosides and -nucleotides includ­
ing their analogues [16].

In Fig. 4 the tem perature dependence o f the posi­
tion o f the N  <=> S equilibrium  is shown in a van’t

H off plot. For com parison also the previously p u b ­
lished data on A, G , 8  BrA, and 8  BrG are given. 
The m inute differences in the [S]/[N] ratios for AA 
and AG as com pared to the more pronounced chang­
es in 8  BrA and 8  BrG could possibly be explained 
by a slight preference o f A G  to adop t the “sjw-ade- 
nosine” conform ation, w ith the 7-am ino group com ­
pletely exposed to the polar environm ent o f the sol­
vent molecules. A van’t H off enthalpy o f — 3 
kJ m ol- 1  is derived for the stabilization o f the S-con- 
form er for all purine(/?)nucleoside analogues con­
strained to the 5 jyz-position o f the base.

The line through the results for 8  BrG as well as 
the line through the data for 8  BrA, AA and AG 
intercept for T  -*<x> the origin o f the diagram . This 
is a further strong evidence for the validity o f the 
description of the conform ational flexibility o f the 
furanoside ring in the two state N <=> S model.
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